Menjivar, J. C1.; Aguilar, J2.; García, I2; Bouza, P3

1. Escuela de Agrónomos. Universidad de Tegucigalpa (Honduras)

2. Dpto de Edafología y Química Agrícola. Facultad de Ciencias. Univ. de Granada

3. Centro Nacional Patagónico. CONICET. Puerto Madryn, Chabut (Argentina)



Map page 948 (Torres) represents an area of 54.344 ha in south-eastern Spain (province of Jaén) and includes the Betic Cordillera. The releif is varied, with a mountainous zone (55% of the area), hilly (22%), old and recent floodplain (12%) and  the rest badlands (11%). The temperature regime of the soils ranges from mesic to thermic and moisture regime is xeric (Soil Survey Staff, 1975). The natural vegetation is within the Mediterranean Region, Betic corological province and Subbetic sector (Rivas Martínez, 1997). Nevertheless, most of the land in cultivated with olive orchards (variety Picual), the aim of the present study being to evaluate the use capacity of these soils.


Materials and Methods

A total of 35 soil profiles were selected to be described macromorphologically and classified according to the FAO (1977, 1998). The analyses made were: organic carbon (Tyurin 1951); carbonates (Barahona, 1984); texture, by the pipette of Robinson (Soil Conservation Service, 1972); bases and exchange capacity by ammonium acatate (1N, pH= 7,0) and sodium acetate (1N pH= 8,2); pH in soil:water suspension 1:2,5; total nitrogen (Bouat and Crouzet, 1965); bioavailable phosphorus (Olsen et al., 1965). Leaf analysis followed the Study of Analytical Techniques for Leaf Diagnosis (Comité Inter-Centros, 1968).

To study the use capacity, we followed 6 different methodologies: a) Agricultural Capacity Classification (Klingebiel et Montgomery, 1961); b) Evaluation System of Agricultural Productivity of the FAO (Riquier, Bramao et Cornet, 1970); c) FCC System modified  by  Sánchez (1982); d) System for Land Evaluation ( FAO, 1976); e) Specific System for Olive Orchards (Aguilar et al., 1995); f) Land Evaluation (Sys et al., 1993 ).


Results and Discussion

The soils of olive orchards studied were highly varied, the typologies in descending order of abundance: Calcaric Regosols, Calcaric Cambisols, Haplic Calcisols, Endopetric and Hypercalcic Calcisols, Calcaric Leptosols, Epipetric Calcisols, Chromic Luvisols and  Vertic Cambisols.

The method of Agricultural Capacities (Klingebiel y Montgomery, 1961), in which the degree of erosion and topsoil depth are the primary characteristics, reflects that none of the soils belong to Class I (unlimited use), only 2,9 % pertain to Class II, and most (65,7%) belong to Classes V and VI, these having limited agricultural use. In the Agricultural Productivity System of the FAO (Riquier, Bramao y Cornet, 1970), in which the main characteristics include available moisture, topsoil depth and nutrient availability, no soils pertained to Class I, 14,3% belonged to Class II (fundamentally Cambisols and Luvisols) and 48,6% belonged to Class IV an V (predominanthy Leptosols, Regosols and Calcisols).

In the FCC System (Buol, 1975) no soil was exempt of limitations for agricultural use. The most frequent limiting physical and chemical properties were: moisture availability, potassium deficiency, high CaCO3 content (>30%), and sharp slopes. In this classification, as in the System for Land Evaluation (FAO), most of the soils fall into Class N1 (unsuitable for current cultivation, but for which the limitations could be solved at high cost).

According to the Specific System for Olive Orchards (Aguilar et al., 1995), as in all the above evaluations, no soil was free of limitations; in this case low rainfall, steep slopes, shallow topsoil, high CaCO3 content, low organic matter content, and reduced exchange capacity were the major limiting factors which are difficult to correct. Meanwhile nutrient deficiency is easily remedied.



Aguilar, J.; Fernández, J.;  Fernández, E.; Haro, S.; MaraĖés, A. Y Rodríguez, T. 1995. El olivar Jienense. Pub. de la Universidad de Jaén 94p

Barahona, E. Et al. 1984. determinaciones analíticas de suelos. Normalización de métodos. IV. Determinación de carbonatos totales y caliza activa. Actas del Congreso Normalización de la Ciencia del Suelo, I, 53-67. Madrid.

Bouat, A. y Crouzet, C. 1965. Notes thecniques sur un appareil semi-automatique de

dosage de l,azote (et de certains composee volatils). Ann. Agron. 16, (1).  107-18

Buol, S.W.; Sánchez, P.A.; Cate, R.B.; y Granger, M.A. 1975. Soil Fertility Capability

Classification. Soil. Man. In Trop. Am . Soil. Sic. Pet. North Caroline. St. Univ.

Raleing. EE.UU.

C. SYS.; Van Ranst.; J.Debabeye.; and F. Beernaert. 1993. Land evaluation. Part.III.

Crop requirements.  General Administration for Developmet Cooperation. Brussels-


Comité Inter Centros  para el Estudio de Técnicas Analíticas  de Diagnóstico Foliar.

1968. Anales  de Edaf y Agrobiol. T XXVII. No 5-6. 409 pp.

FAO. 1976. Esquema para la Evaluación de Tierras. Boletín de suelos. 32. Roma. Italia.

FAO. 1977.  Guía para la descripción de perfiles de suelos. Roma.  70 pp.

Klingebiel, A.A. and Montgomery, P.H. 1961. Land Capability Classification. U. S.

Depart. Of Agriculture. Soil. Cons. Serv. Handbook.210. Washington. EE.UU.

Olsen, S.R. and Dean, L.A. 1965. Phosphorus. En C.A. Black, Ed. Methods of Soil

Analysis, part. II: 1034-1045. Amer. Soc. Agronomy. Inc. Madison, Wisconsin. U.S.A.

Riquier, J. Bramao, D.L. and Cornet, S. P. 1970. A new system of soil appraisal in

terms of actual and potential productivity.  Roma. FAO A.G.L TERS 70/6. 38.pp.

Rivas Martínez. 1997. Biogeographical synthesis of Andalusia. Journal of

Biogeography 24,  915-928.

Sánchez, P.A. 1982. The Fertility Capability Classification System. Geoderma. 27,


Soil Conservation Service. 1972.  Soil Survey Laboratory. Methods and procedures  for collecting soil samples.  Soli Survey Repor 1. U.S.D.A. Dept. Agric.  Washington.

Tyurin, I. V. 1951.  Analytical procedure for a comparative study of soil humus. Trudy.

Pochr.  Inst. Dokuchaeva. 38,5 ( Descrito por Kononova 1961).