1. Introduction

Three-dimensional objects observed in 2 dimensions

 

It is almost impossible to deduce the three-dimensional shape of an object from a thin section. One of the best examples was provided by Smith (1956) and is shown in the following figure, where some of the possible sections originating from a cube are included (e.g. a triangle, a square, a rectangle, a hexagon).


You should also bear in mind that the section observed is tangential or subtangential in many cases, which can lead to mistaken interpretations, for example, the cross sections of channels may appear as oval or spherical voids and will rarely appear elongated.

A tangential section (B) of a nucleic nodule (a) may not touch the nucleus and appear as a typical nodule: a subtangential section of a channel or a cavity or hypo- or quasi-coating (b) may simulate the presence of impregnative nodules (B). A tangential section of a coating of a channel (c) may appear as an infilling (B). The sections (A) would give correct interpretations.

Neither is it probable that the grains are cut according to their longest diameter (figure of the cube), so in the thin section, they will generally appear smaller than their real size.

Only the section that appears as a result of cutting the grain through its central part shows the real diameter.

For the same reason, you hardly ever see skeleton grains in contact with others on thin sections, since the point of contact is located outside the plane of the cut section in the majority of the cases. A closed coarse sand grain packing will appear on the thin section as a cluster of isolated grains that are at a certain distance from each other.

Home page | Contents | Previous | Next | Top